RECEIVING AND INSPECTION
Upon receiving unit, check for any interior and exterior damage, and if found, report it immediately to the carrier. Also check that all accessory items are accounted for and are damage free. Turn the blower wheel by hand to verify free rotation and check the damper (if supplied) for free operation.

WARNING!!
Installation of this ventilator should only be performed by a qualified professional who has read and understands these instructions and is familiar with proper safety precautions. Improper installation poses serious risk of injury due to electric shock, contact with rotating equipment, and other potential hazards. Read this manual thoroughly before installing or servicing this equipment. ALWAYS disconnect power prior to working on fan.

Save these instructions. This document is the property of the owner of this equipment and is required for future maintenance. Leave this document with the owner when installation or service is complete.
TABLE OF CONTENTS

WARRANTY ... 4
INSTALLATION ... 5
 Mechanical ... 5
 Site Preparation .. 5
 Roof Mounting ... 5
 Wall Mounting ... 6
 Curb and Ductwork .. 6
 Up-Blast Roof Mount Installation ... 7
 Up-Blast Roof Mount Utility Installation .. 7
 Up-Blast Wall Mount Installation .. 8
 Up-Blast Through Wall Mount Installation ... 8
 Down-Blast Installation .. 9
 Up-Blast Utility Set Hinging Instructions .. 9
 Typical Hinge Kit – Centrifugal Upblast ... 10
 Typical Grease Box Installation .. 10
 Up-Blast Utility Set Rain Cap Option ... 11
 Up-Blast Utility Set Extension Option ... 11
 Electrical .. 11
 Copper Wire Ampacity ... 12
 PSC (Permanent Split Capacitor) Motor Speed Control ... 13
 ECM (Electronically Controlled Motor) Speed Control .. 13
 Motorized Damper .. 13
 Fan to Building Wiring Connection ... 14
OPERATION .. 15
 Start Up .. 15
 Special Tools Required .. 15
 Start Up Procedure .. 15
 Pulley Setscrew Torque .. 15
 Pulley Alignment .. 16
 Proper Belt Tension ... 16
 Pulley Combination Chart ... 17
 Troubleshooting ... 18
 Troubleshooting Chart ... 18
MAINTENANCE .. 19
 General Maintenance ... 19
 Bearing Grease Charge .. 19
 Bearing Grease Type .. 19
 2 weeks after startup .. 20
 Every 3 months ... 20
 Yearly .. 20
 Start-Up and Maintenance Documentation ... 21
 Job Information ... 21
 Fan Unit Information .. 21
 Maintenance Record ... 21
 Factory Service Department .. 22
WARRANTY
This equipment is warranted to be free from defects in materials and workmanship, under normal use and service, for a period of 12 months from date of shipment. This warranty shall not apply if:

1. The equipment is not installed by a qualified installer per the MANUFACTURER’S installation instructions shipped with the product,
2. The equipment is not installed in accordance with federal, state and local codes and regulations,
3. The equipment is misused or neglected,
4. The equipment is not operated within its published capacity,
5. The invoice is not paid within the terms of the sales agreement.

The MANUFACTURER shall not be liable for incidental and consequential losses and damages potentially attributable to malfunctioning equipment. Should any part of the equipment prove to be defective in material or workmanship within the 12-month warranty period, upon examination by the MANUFACTURER, such part will be repaired or replaced by MANUFACTURER at no charge. The BUYER shall pay all labor costs incurred in connection with such repair or replacement. Equipment shall not be returned without MANUFACTURER’S prior authorization and all returned equipment shall be shipped by the BUYER, freight prepaid to a destination determined by the MANUFACTURER.
INSTALLATION

It is imperative that this unit is installed and operated with the designed airflow and electrical supply in accordance with this manual. If there are any questions about any items, please call the service department at 1-866-784-6900 for warranty and technical support issues.

Mechanical

WARNING: DO NOT RAISE VENTILATOR BY THE HOOD, BLOWER OR MOTOR SHAFT, OR BEARINGS – USE LIFTING LUGS PROVIDED OR A SLING

Site Preparation

1. Provide clearance around installation site to safely rig and lift equipment into its final position. Supports must adequately support equipment. Refer to manufacturer's estimated weights.
2. Consider general service and installation space when locating unit.
3. Locate unit close to the space it will serve to reduce long, twisted duct runs.
4. The fan discharge must be located at least 10 feet away from any supply intakes. The fan discharge shall be located in accordance with the applicable building code provisions.

Roof Mounting

1. Ventilators are designed for installation atop a prefabricated or factory built roof curb. Follow manufacturer’s instructions for proper curb installation.
2. If a backdraft damper is required, it should be secured within the curb using sheet metal screws, to the bottom of a damper box or damper support flanges located below the roof deck.
 CAUTION: NFPA-96 RECOMMENDS THAT DAMPERS SHOULD NOT BE INSTALLED WHEN EXHAUSTER IS USED FOR REMOVAL OF SMOKE AND GREASE LADEN VAPORS FROM COMMERCIAL KITCHEN EQUIPMENT. CONSULT STATE AND LOCAL CODES FOR DETAILED REQUIREMENTS.
3. If an up-blast fan is used for kitchen hood exhaust, ensure discharge is at least 40 inches above the roof surface in accordance with NFPA96.
4. On an up-blast fan, normally the power cord is brought through the conduit tube located on the top skirt on the outside of the unit.
5. Secure ventilator curb through vertical portion of the ventilator base assembly flange using a minimum of eight (8) lug screws, anchor bolts, or other suitable fasteners (not furnished).
6. Before connecting fan motor to power source verify power line wiring is de-energized.
7. Connect power supply wiring to the motor as indicated on the motor nameplate or terminal box cover. Make certain that the power source is compatible with the requirements of your equipment.
8. Before powering up fan check ventilator wheel for free rotation.
9. Check all fasteners for tightness.
11. A drain pipe is provided for single-point drainage of water and residue on up-blast fans. The drain pipe should be positioned towards the roof slope. Some means for collection of this residue must be provided, either a container directly under the trough or use of an adapter and pipe to carry the residue to a remote collection point. An optional down spout and grease collection box is available as an accessory item for up-blast fans.
Wall Mounting

1. The same instructions, warnings and notes found under Roof Mounting section will apply. Refer to steps 2 and 3, and steps 5 through 8.
2. **Masonry Wall:** Around the wall opening install an angle iron frame at least 2” x 2” x ¼”. Frame should be approximately 1/2” smaller than the inside base dimension of the ventilator. Secure the lead cinch type anchors with non-ferrous bolts (3 per side). The ventilator should be mounted to the mounting angle with self-taping sheet metal screws (3 per side).
3. **Wood Sidings:** Around the wall opening install a wooden frame 2” high x 2” wide. Frame should be approximately 1/2” smaller than the inside base dimension of the ventilator. Secure with counter-sunk expansion type lag bolts (3 per side). The ventilator should then be mounted to the mounting frame with the square head wood screws (3 per side) 3/8” minimum.
4. Steel wall mount brackets are also available as a factory option for the fan.
5. The mounting flange connections should be coated with a suitable caulking compound or an approved waterproof mastic sealer.
6. Wall mount application is not recommended from fans with wheels 30” or larger.

IMPORTANT: OSHA REGULATIONS REQUIRE THE VENTILATOR TO BE MOUNTED AT LEAST EIGHT (8) FEET ABOVE GROUND OR FLOOR LEVEL.

Curb and Ductwork

This fan was specified for a specific CFM and static pressure. The ductwork attached to this unit will significantly affect the airflow performance. Flexible ductwork and square elbows should not be used. Also, transitions and turns in ductwork near the fan inlet will cause system effect and will drastically increase the static pressure and reduce airflow. Follow SMACNA guides and recommendations for the remaining duct run. Fans designed for rooftop installation should be installed on a prefabricated or factory built roof curb. Follow curb manufacturer’s instructions for proper curb installation. Curb should be connected to structural roof members with at least four (3) lug screws, anchor bolts, or other suitable fasteners (not furnished) per curb flange. Curb flanges should be caulked to roof.

The fan should be installed on a curb and/or rail elevated not less than 14” above any surface. Be sure duct connection and fan outlet are properly aligned and sealed. Secure fan to curb through vertical portion of the ventilator base assembly flange using a minimum of eight (8) lug screws, anchor bolts, or other suitable fasteners (not furnished). Shims may be required depending upon curb installation and roofing material. Check all fasteners for tightness. The diagrams below show different mechanical installation configurations.
Up-Blast Roof Mount Installation

FEATURES:
- Root mounted fans
- Restaurant model
- UL732
- Area sound and air certified
- Wring from motor to disconnect switch
- Weatherproof disconnect
- High heat operation 290°F (49°C)
- Grease classification testing

NORMAL TEMPERATURE TEST:
Exhaust fan must operate continuously while exhausting air at 290°F (49°C) until all fan parts have reached thermal equilibrium and without any deteriorating effects to the fan which would cause unsafe operation.

ABNORMAL FLARE-UP TEST:
Exhaust fan must operate continuously while exhausting burning grease vapors at 600°F (315°C) for a period of 15 minutes without the fan becoming damaged to any extent that could cause an unsafe condition.

OPTIONS:
- Grease box
- Hinged fan
- Pitched curb
- Insulated curb

Ductwork between exhaust riser and fan (by others)

Up-Blast Roof Mount Utility Installation

FEATURES:
- Root mounted fans
- Restaurant model
- UL732
- High heat operation direct drive 280°F (49°C)
- High heat operation belt drive 290°F (49°C)
- Meat mixer
- Grease classification testing
- Tilt out wheel
- Locking pin for power pack
- Motor weather cover

NORMAL TEMPERATURE TEST:
Exhaust fan must operate continuously while exhausting air at 290°F (49°C) until all fan parts have reached thermal equilibrium and without any deteriorating effects to the fan which would cause unsafe operation.

NORMAL TEMPERATURE TEST:
Exhaust fan must operate continuously while exhausting air at 290°F (49°C) until all fan parts have reached thermal equilibrium and without any deteriorating effects to the fan which would cause unsafe operation.

ABNORMAL FLARE-UP TEST:
Exhaust fan must operate continuously while exhausting burning grease vapors at 600°F (315°C) for a period of 15 minutes without the fan becoming damaged to any extent that could cause an unsafe condition.

OPTIONS:
- Grease box
- Pitched curb
- Insulated curb
- Rain cap

Ductwork between exhaust piece on hood and fan (by others)
Down-Blast Installation

FEATURES:
- Roof Mounted Fans
- UL703
- ANCA Sound and Air Certified
- Wiring from Motor to Disconnect Switch
- Disconnect Switch
- Standard Bird Screen

OPTIONS:
- Hinged Fan
- Pitched Curb
- Insulating Curb
- Backdraft Damper

BackDraft Damper Installation

Pitched Curbs Are Available For Pitched Roofs. Specify Pitch. Example: 7/12 Pitch = 30° Slope

Up-Blast Utility Set Hinging Instructions

Utility Sets May Not Be Wall Mounted

Hinging Instructions:
1. Remove the Power Pack Release Pin
2. Twist and Turn the Power Pack Front Latch to Release
3. Lift the Power Pack Using the Front Handle
4. The Power Pack will Tilt Back As Required
5. The Power Pack Latch will Automatically Engage the Spring Pin
6. To Close the Power Pack, Hold the Lifting Handle and Pull the Spring Pin Up
7. Ledge the Power Pack Down and Release the Release Pin
8. Engage the Front Latch into the Lifting Handle and Twist to Lock
9. Inspect the Power Pack, Top Plate Should Be Sealed with Top Gasket
10. Turn the Wheel To Make Sure There Isn’t Any Interference
Typical Hinge Kit – Centrifugal Upblast

HINGE KIT INSTALLATION

CLOSED POSITION

OPEN POSITION

ATTENTION INSTALLER MUST SOME LABEL HERE INFORMATION MENTIONED ON LABEL INSTALLATION SHOULD PERFORM ELECTRICAL GROUND TO SYSTEM OPTIONS

PARTS INCLUDED
- 2 - FAN PLATE (LEFT & RIGHT)
- 2 - CURT PLATE (LEFT & RIGHT)
- 5 - WIDE NUTS
- 1 - SHEET METAL SPRING
- 1 - CHAIN (1/8"
- 1 - CURT PLATE (LEFT)
- 1 - CURT PLATE (RIGHT)

FIELD INSTALLATION

STEP 1
ASSEMBLE FAN PLATE WITH CURT PLATE AS SHOWN ON FIG. 1 AND FIG. 2, IF PARTS ARE NOT ATTACHED.

STEP 2
INSTALL PLATE TO THE CURT PLATE USING THE
SHEET METAL SPRING. PLACE CURT PLATE ON THE CURT TOPSIDE THE CURT PLATE IS APPLIED PLACE METAL SPRING INTO THE CURT.

STEP 3
Screw CURT PLATE TO THE CURT PLATE USING THE
CURT PLATE IS APPLIED PLACE METAL SPRING INTO THE CURT.

STEP 4
Screw the CURT PLATE TO THE CURT PLATE USING THE
CURT PLATE IS APPLIED PLACE METAL SPRING INTO THE CURT.

Typical Grease Box Installation

GREASE BOX INSTALLATION

CLOSED POSITION

OPEN POSITION

ATTENTION INSTALLER MUST SOME LABEL HERE INFORMATION MENTIONED ON LABEL INSTALLATION SHOULD PERFORM ELECTRICAL GROUND TO SYSTEM OPTIONS

PARTS INCLUDED
- GREASE BOX
- GREASE BOX COVER
- GREASE PUMP
- SHEET METAL SCREWS
- 1 - CURT PLATE (LEFT)

FIELD INSTALLATION

STEP 1
ATTACH GREASE BOX COVER TO THE CURT
HOLD IT PLACED AS SHOWN ON FIG. 1.
Screw the GREASE BOX COVER TO THE CURT PLATE USING SCREWS (1/4"

STEP 2
ATTACH GREASE BOX TO THE CURT BOX USING SCREWS AND BOLT AS SHOWN ON FIG. 2.

STEP 3
INSTALL GREASE BOX AS SHOWN ON FIG. 4.
Up-Blast Utility Set Rain Cap Option

Rain Cap Option - Up Blast Utility Set

Up-Blast Utility Set Extension Option

Extension Option - Up Blast Utility Set
Electrical

Before connecting power to the fan, read and understand this entire section of this document. As-built wiring diagrams are available with each fan by the factory.

Electrical wiring and connections should be done in accordance with local ordinances and the National Electric Code, ANSI/NFPA70. Be sure the voltage and phase of the power supply and the wire amperage capacity is in accordance with the motor nameplate. For additional safety information refer to AMCA publication 410-96, Recommended Safety Practices for Users and Installers of Industrial and Commercial Fans.

1. Always **disconnect power** before working on or near a fan. Lock and tag the disconnect switch or breaker to prevent accidental power up.
2. A disconnect switch is shipped with every fan. The switch is located on the exterior of up-blast fans and in the interior of down-blast fans. On down-blast direct drive fans, the disconnect function is built into the speed controller.
3. A dedicated branch circuit should supply the motor circuit with short circuit protection according to the National Electric Code. This dedicated branch should be run to the junction box mentioned above and connected as shown in a following illustration labeled “Fan to Building Wiring Connection”.
4. Make certain that the power source is compatible with the requirements of your equipment. The fan nameplate identifies the proper phase and voltage of the motor.
5. Before connecting fan to building power source, verify power line wiring is de-energized.
6. Secure the power cable to prevent contact with sharp objects.
7. Do not kink power cable and never allow the cable to come in contact with oil, grease, hot surfaces or chemicals.
8. Before powering up fan check fan wheel for free rotation and make sure that the interior of the fan is free of loose debris or shipping materials.
9. If any of the original wire supplied with the fan must be replaced, it must be replaced with type TW wire or equivalent.

IMPORTANT: FANS WITH HINGE KITS REQUIRE ENOUGH SLACK IN THE WIRING TO THE FAN TO ALLOW FAN TO TILT BACK TO THE OPEN POSITION. ELECTRICIAN MUST CHECK THIS AND ACCOUNT FOR THE RANGE OF MOTION OF THE FAN.

Copper Wire Ampacity

<table>
<thead>
<tr>
<th>Wire Size AWG</th>
<th>Maximum Amps</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>20</td>
</tr>
<tr>
<td>12</td>
<td>25</td>
</tr>
<tr>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>8</td>
<td>40</td>
</tr>
<tr>
<td>6</td>
<td>55</td>
</tr>
<tr>
<td>4</td>
<td>70</td>
</tr>
</tbody>
</table>

WARNING!!

Disconnect power before installing or servicing fan. High voltage electrical input is needed for this equipment. This work should be performed by a qualified electrician.
PSC (Permanent Split Capacitor) Motor Speed Control

Some single phase direct drive fans contain speed controls that regulate the amount of voltage going to the motor. Specific PSC motors must be used in conjunction with speed controls. The speed control has a knob with an off position, and high to low range. At high speed, the speed control allows all of the line voltage to pass right to the motor.

A minimum speed adjustment is provided to allow independent control of the minimum speed setting. Minimum speed adjustment ensures motor runs with sufficient torque to prevent stalling. To adjust this:

1) Motor must be in actual operating conditions to achieve proper speed adjustment. Motor will not slow down unless proper load is applied.
2) Turn main control knob to lowest speed position.
3) Locate and adjust minimum speed setting and adjust with small screw driver. This can be found under the speed control faceplate. (rotate clockwise to decrease minimum speed; counter-clockwise to increase minimum speed).
4) Motor will now operate from this preset minimum speed to full speed.

The lowest minimum voltage that may be applied to these motors is 65VAC. Running lower voltages to the motor can cause premature failure and overheating problems.

ECM (Electronically Controlled Motor) Speed Control

ECM motors and control allows accurate manual adjustment of fan speed. The benefit of ECM motors is exceptional efficiency, performance, and motor life.

The control used with ECM motors features a 4 digit LED numerical display. The blue knob on the control allows the user to set the flow index with a screwdriver. Twenty seconds later, the display shows the motor RPM. Then, the display periodically alternates between the flow index and motor RPM. The flow index has a range of 0 to 100% and is typically linear with motor RPM.

The ECM control requires a 24 VAC input and can locally turn the motor on and off. The motor can be adjusted between 300 RPM and maximum speed with this control.

NOTE: To adjust the speed of 3 phase direct drive motors, a variable frequency drive is required.

Motorized Damper

On units shipped with the optional motorized damper, power must be supplied to the damper according to the damper nameplate. The damper motor is controlled external to the fan. External wiring to the damper motor is required.
OPERATION
Prior to starting up or operating the ventilator, check all fasteners for tightness. In particular, check the set screw in the wheel hub, bearings and the fan sheaves (pulleys). With power to the fan OFF or prior to connecting ventilator to power, turn the fan wheel by hand to be sure it is not striking the inlet or any obstacles. Re-center if necessary.

Start Up

Special Tools Required
- AC Voltage Meter
- Tachometer
- Amperage Meter
- Standard Hand Tools

Start Up Procedure

1. Check all electrical connections for tightness and continuity.
2. Check pulley alignment and belt tension as described below for belt drive fans.
3. Inspect the condition of the damper and damper linkage, if provided.
4. Inspect the air-stream for obstructions or debris in wheel.
5. Compare the supplied voltage with the fan’s nameplate voltage. If this does not match, correct the problem.
6. Start the fan up, by turning the external disconnect to the ON position, and shut it OFF immediately to check rotation of the wheel with the directional arrow on the blower scroll. Reversed rotation will result in poor air performance, motor overloading and possible burnout. For units equipped with a single-phase motor check the motor wiring diagram to change rotation. For 3-phase motors, any two power leads can be interchanged to reverse motor direction.
7. When the fan is started up, observe the operation and check for any unusual noises.
8. Switch the external disconnect back to the ON position and with the air system in full operation and all ducts attached, measure the system airflow. Motor sheave (pulley) is variable pitch, and allows for an increase or decrease of the fan RPM to adjust the airflow, as shown in the illustration below. For your convenience, a RPM chart is included in the following pages. If the fan is a direct drive version, it may have a speed control to adjust speed.
9. Once the proper airflow is achieved, measure and record the fan speed with a reliable tachometer. Caution - Excessive speed will result in motor overloading or bearing failure. Do not set fan RPMs higher than specified in the maximum RPM chart. See the troubleshooting guide for more information.
10. Measure and record the voltage and amperage to the motor and compare with the motor nameplate to determine if the motor is operating under safe load condition.
11. Once the rpm of the ventilator has been properly set, disconnect power and recheck belt tension and pulley alignment as described below.

Pulley Setscrew Torque

<table>
<thead>
<tr>
<th>Thread Size</th>
<th>Torque (IN/Lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 10 (bushing)</td>
<td>32</td>
</tr>
<tr>
<td>1/4” (bushing)</td>
<td>72</td>
</tr>
<tr>
<td>5/16”</td>
<td>130</td>
</tr>
</tbody>
</table>

![Pulley Adjustment Illustration]
Pulley Adjustment (Belt Drive Fans)

The adjustable motor pulley is factory set for the RPM specified. Speed can be increased by closing or decreased by opening the adjustable motor sheave. Two groove variable pitch pulleys must be adjusted an equal number of turns open or closed. Any increase in speed represents a substantial increase in horsepower required by the unit. Motor amperage should always be checked to avoid serious damage to the motor when the speed is varied. Always torque setscrews according to the setscrew torque chart.

Pulley Alignment

Proper Belt Tension
Pulley Combination Chart

<table>
<thead>
<tr>
<th>1/2 to 1 HP</th>
<th>MOTOR PULLEY</th>
<th>OD</th>
<th>OD</th>
<th>Pd1</th>
<th>Pd2</th>
<th>Turns on Motor Pulley</th>
</tr>
</thead>
<tbody>
<tr>
<td>AK114</td>
<td>11.2</td>
<td>150</td>
<td>145</td>
<td>160</td>
<td>155</td>
<td>172</td>
</tr>
<tr>
<td>2B5V124</td>
<td>12</td>
<td>105</td>
<td>100</td>
<td>115</td>
<td>110</td>
<td>127</td>
</tr>
</tbody>
</table>

BELTS

- BX BELTS
 - 2VP75 5.8 7 6.2 7.4
 - 2VP42 2.9 3.9 3 4
 - 2VP60 4.3 5.5 4.7 5.9

MOTOR PULLEY Dd1 Dd2 Pd1 Pd2

- Open Closed
- Open Closed
- Open Closed

2 to 5 HP

<table>
<thead>
<tr>
<th>2 to 5 HP</th>
<th>MOTOR PULLEY</th>
<th>OD</th>
<th>OD</th>
<th>Pd1</th>
<th>Pd2</th>
<th>Turns on Motor Pulley</th>
</tr>
</thead>
<tbody>
<tr>
<td>AK114</td>
<td>11.2</td>
<td>150</td>
<td>145</td>
<td>160</td>
<td>155</td>
<td>172</td>
</tr>
<tr>
<td>2B5V124</td>
<td>12</td>
<td>105</td>
<td>100</td>
<td>115</td>
<td>110</td>
<td>127</td>
</tr>
</tbody>
</table>

BELTS

- BX BELTS
 - 2VP75 5.8 7 6.2 7.4
 - 2VP42 2.9 3.9 3 4
 - 2VP60 4.3 5.5 4.7 5.9

MOTOR PULLEY Dd1 Dd2 Pd1 Pd2

- Open Closed
- Open Closed
- Open Closed

7 to 10 HP

<table>
<thead>
<tr>
<th>7 to 10 HP</th>
<th>MOTOR PULLEY</th>
<th>OD</th>
<th>OD</th>
<th>Pd1</th>
<th>Pd2</th>
<th>Turns on Motor Pulley</th>
</tr>
</thead>
<tbody>
<tr>
<td>AK114</td>
<td>11.2</td>
<td>150</td>
<td>145</td>
<td>160</td>
<td>155</td>
<td>172</td>
</tr>
<tr>
<td>2B5V124</td>
<td>12</td>
<td>105</td>
<td>100</td>
<td>115</td>
<td>110</td>
<td>127</td>
</tr>
</tbody>
</table>

BELTS

- BX BELTS
 - 2VP75 5.8 7 6.2 7.4
 - 2VP42 2.9 3.9 3 4
 - 2VP60 4.3 5.5 4.7 5.9

MOTOR PULLEY Dd1 Dd2 Pd1 Pd2

- Open Closed
- Open Closed
- Open Closed

15 to 20 HP

<table>
<thead>
<tr>
<th>15 to 20 HP</th>
<th>MOTOR PULLEY</th>
<th>OD</th>
<th>OD</th>
<th>Pd1</th>
<th>Pd2</th>
<th>Turns on Motor Pulley</th>
</tr>
</thead>
<tbody>
<tr>
<td>AK114</td>
<td>11.2</td>
<td>150</td>
<td>145</td>
<td>160</td>
<td>155</td>
<td>172</td>
</tr>
<tr>
<td>2B5V124</td>
<td>12</td>
<td>105</td>
<td>100</td>
<td>115</td>
<td>110</td>
<td>127</td>
</tr>
</tbody>
</table>
Troubleshooting

The following table lists causes and corrective actions for possible problems with the fan units. Review this list prior to consulting manufacturer.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Potential Cause</th>
<th>Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fan Inoperative</td>
<td>Blown fuse or open circuit breaker</td>
<td>Replace fuse or reset circuit breaker and check amps</td>
</tr>
<tr>
<td></td>
<td>Disconnect switch in "Off" position</td>
<td>Turn to "On" position</td>
</tr>
<tr>
<td></td>
<td>Motor wired incorrectly</td>
<td>Check motor wiring to wiring diagram located on fan motor</td>
</tr>
<tr>
<td></td>
<td>Broken fan belt</td>
<td>Replace belt</td>
</tr>
<tr>
<td></td>
<td>Motor starter overloaded</td>
<td>Reset starter and check amps</td>
</tr>
<tr>
<td>Motor Overload</td>
<td>Fan rotating in the wrong direction</td>
<td>Be sure fan is rotating in the direction shown on rotation label</td>
</tr>
<tr>
<td></td>
<td>Fan speed is too high</td>
<td>Reduce fan RPM</td>
</tr>
<tr>
<td></td>
<td>Motor wired incorrectly</td>
<td>Check motor wiring to wiring diagram located on fan motor</td>
</tr>
<tr>
<td></td>
<td>Overload in starter set too low</td>
<td>Set overload to motor FLA value</td>
</tr>
<tr>
<td></td>
<td>Motor HP too low</td>
<td>Determine if HP is sufficient for job</td>
</tr>
<tr>
<td></td>
<td>Duct static pressure lower than</td>
<td>Reduce fan RPM</td>
</tr>
<tr>
<td></td>
<td>design</td>
<td></td>
</tr>
<tr>
<td>Insufficient Airflow</td>
<td>Fan rotating in the wrong direction</td>
<td>Be sure fan is rotating in the direction shown on rotation label</td>
</tr>
<tr>
<td></td>
<td>Poor inlet/outlet conditions</td>
<td>There should be a straight clear duct at the inlet/outlet</td>
</tr>
<tr>
<td></td>
<td>Damper not fully open</td>
<td>Inspect damper linkage and replace damper motor if needed</td>
</tr>
<tr>
<td></td>
<td>Duct static pressure higher than</td>
<td>Improve ductwork to eliminate or reduce duct losses</td>
</tr>
<tr>
<td></td>
<td>design</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Blower speed too low</td>
<td>Increase fan RPM. Do not overload motor</td>
</tr>
<tr>
<td></td>
<td>Belt slippage</td>
<td>Adjust belt tension</td>
</tr>
<tr>
<td>Excessive Airflow</td>
<td>Blower speed to high</td>
<td>Reduce fan RPM</td>
</tr>
<tr>
<td></td>
<td>Duct static pressure lower than</td>
<td>Reduce fan RPM</td>
</tr>
<tr>
<td></td>
<td>design</td>
<td></td>
</tr>
<tr>
<td>Excessive Vibration and Noise</td>
<td>Misaligned pulleys</td>
<td>Align pulleys</td>
</tr>
<tr>
<td></td>
<td>Damaged or unbalanced wheel</td>
<td>Replace wheel</td>
</tr>
<tr>
<td></td>
<td>Fan is operating in the unstable</td>
<td>Refer to performance curve for fan</td>
</tr>
<tr>
<td></td>
<td>region of the fan curve</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bearings need lubrication or</td>
<td>Lubricate or replace</td>
</tr>
<tr>
<td></td>
<td>replacement</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fan speed is too high</td>
<td>Reduce fan RPM</td>
</tr>
<tr>
<td></td>
<td>Belts too loose, worn or oily</td>
<td>Inspect and replace if needed</td>
</tr>
</tbody>
</table>
MAINTENANCE

To guarantee trouble free operation of this fan, the manufacturer suggests following these guidelines. Most problems associated with fan failures are directly related to poor service and maintenance.

Please record any maintenance or service performed on this fan in the documentation section located at the end of this manual.

WARNING: DO NOT ATTEMPT MAINTENANCE ON THE FAN UNTIL THE ELECTRICAL SUPPLY HAS BEEN COMPLETELY DISCONNECTED

General Maintenance

1. Fan discharge and approaches to ventilator should be kept clean and free from any obstruction.
2. Motors are normally permanently lubricated. Check bearings periodically. If they have grease fittings lubricate each season. Use caution when lubricating bearings, wipe the fittings clean, the unit should be rotated by hand while lubricating. Bearings should be lubricated every 2 months. The type of grease and the amount of grease can is shown below. **Caution: Bearings are sealed and over-greasing bearings can cause damage to the bearings. Do not grease until grease comes out of seals. Only add the appropriate amount of grease.**
3. All fasteners should be checked for tightness each time maintenance checks are preformed prior to restarting unit.
4. Fans require very little attention when moving clean air. Occasionally oil and dust may accumulate causing imbalance. If the fan is installed in a corrosive or dirty atmosphere, periodically inspect and clean the wheel, inlet and other moving parts to ensure smooth and safe operation.

Bearing Grease Charge

<table>
<thead>
<tr>
<th>Shaft Size (Inches)</th>
<th>Grease Charge (Ounces)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2 to 3/4</td>
<td>0.05</td>
</tr>
<tr>
<td>7/8 to 1 3/16</td>
<td>0.10</td>
</tr>
<tr>
<td>1 1/4 to 1 1/2</td>
<td>0.15</td>
</tr>
<tr>
<td>1 11/16 to 1 15/16</td>
<td>0.20</td>
</tr>
<tr>
<td>2 to 2 7/16</td>
<td>0.30</td>
</tr>
<tr>
<td>2 1/2 to 2 15/16</td>
<td>0.50</td>
</tr>
<tr>
<td>3 to 3 7/16</td>
<td>0.85</td>
</tr>
<tr>
<td>3 1/2 to 4</td>
<td>1.50</td>
</tr>
</tbody>
</table>

Bearing Grease Type

<table>
<thead>
<tr>
<th>Thickener</th>
<th>Lithium Complex</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil</td>
<td>Petroleum</td>
</tr>
<tr>
<td>Thickness</td>
<td>NLGI 2</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-20 F to 200 F</td>
</tr>
</tbody>
</table>
2 weeks after startup

1. Belt tension should be checked after the first 2 weeks of fan operation on belt drive fans. Belts tend to stretch and settle into pulleys after an initial start-up sequence. **Do not tension belts by changing the setting of the motor pulley**, this will change the fan speed and may damage the motor. To re-tension belts, turn the power to the fan motor OFF. Loosen the fasteners that hold the motor to the fan. Move the motor to the left or right to adjust the belt tension. Belt tension should be adjusted to allow 1/64” of deflection per inch of belt span. Exercise extreme care when adjusting V-belts as not to misalign pulleys. Any misalignment will cause a sharp reduction in belt life and produce squeaky noises. Over-tightening will cause excessive belt and bearing wear as well as noise. Too little tension will cause slippage at startup and uneven wear. **Whenever belts are removed or installed, never force belts over pulleys without loosening motor first to relieve belt tension**. When replacing belts, use the same type as supplied by the manufacturer. On units shipped with double groove pulleys, matched belts should always be used.

2. All fasteners should be checked for tightness each time maintenance checks are preformed prior to restarting unit.

Every 3 months

1. Belt tension should be checked quarterly for belt drive fans. See instructions in the previous maintenance section. Over-tightening will cause excessive bearing wear and noise. Too little tension will cause slippage at startup and uneven wear.

2. Fans need to be cleaned quarterly, and more often in severe conditions.

Yearly

1. Inspect bearings for wear and deterioration. Replace/grease if necessary.
2. Inspect belt wear and replace torn or worn belts on belt drive fans.
3. Inspect bolts and set screws for tightness. Tighten as necessary.
4. Inspect motor for cleanliness. Clean exterior surfaces only. Remove dust and grease from the motor housing to ensure proper motor cooling. Remove dirt and grease from the wheel and housing to prevent imbalance and damage.
Start-Up and Maintenance Documentation

START-UP AND MEASUREMENTS SHOULD BE PERFORMED AFTER THE SYSTEM HAS BEEN AIR BALANCED (Warranty will be void without completion of this form)

Job Information

<table>
<thead>
<tr>
<th>Job Name</th>
<th>Service Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>Address</td>
</tr>
<tr>
<td>City</td>
<td>City</td>
</tr>
<tr>
<td>State</td>
<td>State</td>
</tr>
<tr>
<td>Zip</td>
<td>Zip</td>
</tr>
<tr>
<td>Phone Number</td>
<td>Phone Number</td>
</tr>
<tr>
<td>Fax Number</td>
<td>Fax Number</td>
</tr>
<tr>
<td>Contact</td>
<td>Contact</td>
</tr>
<tr>
<td>Purchase Date</td>
<td>Start-Up Date</td>
</tr>
</tbody>
</table>

Fan Unit Information

Refer to the start-up procedure in this manual to complete this section.

<table>
<thead>
<tr>
<th>Name Plate and Unit Information</th>
<th>Field Measured Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model Number</td>
<td>Voltage</td>
</tr>
<tr>
<td>Serial Number</td>
<td>Amperage**</td>
</tr>
<tr>
<td>Volts</td>
<td>RPM</td>
</tr>
<tr>
<td>Hertz</td>
<td></td>
</tr>
<tr>
<td>Phase</td>
<td></td>
</tr>
<tr>
<td>FLA</td>
<td>Blower Rotation Correct</td>
</tr>
<tr>
<td>HP</td>
<td></td>
</tr>
<tr>
<td>Blower Pulley</td>
<td></td>
</tr>
<tr>
<td>Motor Pulley</td>
<td></td>
</tr>
<tr>
<td>Belt Number</td>
<td></td>
</tr>
</tbody>
</table>

**If measured amps exceed the FLA rating on the nameplate, fan RPM must be reduced to decrease the measured amps below the nameplate FLA rating.

Maintenance Record

<table>
<thead>
<tr>
<th>Date</th>
<th>Service Performed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>Service Performed</td>
</tr>
<tr>
<td>------</td>
<td>-------------------</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>